Poprawa efektywności energetycznej małych oczyszczalni oraz biogazowni rolniczych to główne założenia innowacyjnego systemu, który tworzą naukowcy z Politechniki Gdańskiej. Trwają prace nad demonstratorem tego układu, który będzie funkcjonował w jednej z pomorskich oczyszczalni.

Reklama

Małe oczyszczalnie w Polsce borykają się z problemem zagospodarowania osadów, pozostających po procesie biologicznego oczyszczania ścieków. Procesy oczyszczania są także bardzo energochłonne, co przy wzrostach cen energii może decydować o opłacalności całego przedsięwzięcia. Dlatego kluczowego znaczenia nabiera gospodarka energią odpadową i surowcami w obrębie oczyszczalni.

Międzywydziałowy zespół naukowców z Politechniki Gdańskiej podjął się budowy i testowania demonstratora systemu, który zapewni poprawę efektywności energetycznej małych oczyszczalni oraz biogazowni rolniczych. System umożliwi m.in.:

  • bardziej wydajną produkcję biogazu z osadu czynnego (poddanego wcześniej procesowi dezintegracji niskotemperaturowej), także współfermentowanego z lokalnymi odpadami biodegradowalnymi;
  • odzysk i zagospodarowanie ciepła odpadowego/procesowego z udziałem technologii opartej o pompy ciepła;
  • odzysk wody z pofermentu do irygacji pól, a także zastosowanie pofermentu jako nawozu płynnego bogatego w biogeny (azot i fosfor), po wcześniejszym jego podczyszczeniu.

Oto mapa biogazowni rolniczych w Polsce!


– Dzięki naszemu pomysłowi, będzie można zwiększyć wydajność produkcji biogazu, skuteczniej odzyskiwać ciepło procesowe i jednocześnie zmniejszać ilość osadów nadmiernych wymagających zagospodarowania. To będą wymierne korzyści dla oczyszczalni – tłumaczy prof. Jan Wajs z Instytutu Energii Wydziału Inżynierii Mechanicznej i Okrętownictwa, kierownik projektu.

Demonstrator systemu, który będzie budowany w oczyszczalni, składa się z trzech podsystemów. Pierwszy z nich to prototypowa instalacja niskotemperaturowej dezintegracji i komora fermentacji, gdzie uwaga zostanie skupiona na poprawie funkcjonalności tych procesów, zwłaszcza w zakresie zwiększonej produkcji biogazu oraz odzysku produktów dla rolnictwa.

Dezintegracja to wymagający nakładu energetycznego proces rozdrobnienia/zniszczenia struktury osadu czynnego czy innego substratu biodegradowalnego. Organiczne składniki uwolnione do roztworu stają się bardziej dostępne jako substrat pokarmowy dla bakterii w procesie fermentacji beztlenowej. Do korzyści z tego procesu można zaliczyć przede wszystkim zwiększoną produkcję biogazu w procesie fermentacji, zmniejszenie stężenia suchej masy organicznej w przefermentowanych osadach, a także zmniejszenie ilości generowanych osadów.

– Masa pofermentacyjna, która jest wytwarzana w procesie fermentacji, jest bogata w składniki odżywcze i można ją stosować jako nawóz – wyjaśnia prof. Sylwia Fudala–Książek. – Może być alternatywą dla znacznie droższych nawozów mineralnych, jednak poferment oraz wody (odcieki) z jego odwadniania muszą być odpowiednio przygotowane, żeby były bezpieczne dla środowiska przed ich ostatecznym zagospodarowaniem. Jeden z testowanych elementów naszego systemu ma to zapewnić w przyszłości.

I dodaje:

– Drugi istotny podsystem obejmuje innowacyjną instalację grzewczo-chłodzącą, dedykowaną procesom dezintegracji osadu czynnego i fermentacji, wraz z układem odzysku ciepła odpadowego/procesowego, dla poprawy efektywności energetycznej tych procesów. Opracowane rozwiązanie zapewni redukcję zapotrzebowania na energię elektryczną w oczyszczalni.

To tylko fragment artykułu. Całym przeczytasz w Magazynie Biomasa. W internecie za darmo:

Inne wydania Magazynu Biomasa znajdziesz tutaj. Dlatego kliknij i czytaj!

Tekst: Oprac. Redakcja na podst. informacji Politechniki Gdańskiej
Zdjęcie: Shutterstock
Newsletter

Newsletter

Bądź na bieżąco z branżą OZE